Corrigé du TD n°4 Applications linéaires

EXERCICE 1

$$f\binom{x}{y} = \binom{x+2y}{x-y}$$

- 1. $f(\cdot)$ est une application de \mathbb{R}^2 dans \mathbb{R}^3 . En effet,
 - le vecteur $\binom{x}{y}$ est un élément de \mathbb{R}^2 (puisqu'il a deux coordonnées) et \mathbb{R}^2 est donc l'espace vectoriel de départ,
 - le vecteur $\begin{pmatrix} x+2y\\ x-y\\ 2y \end{pmatrix}$ est un élément de \mathbb{R}^3 (puisqu'il a trois coordonnées) et \mathbb{R}^3 est donc l'espace vectoriel d'arrivée.
- 2. Pour écrire $f \binom{x}{y}$ sous la forme $x c_1 + y c_2$, où c_1 et c_2 sont des vecteurs (ou matrices) colonnes de \mathbb{R}^3 , on commence par écrire le vecteur image $\begin{pmatrix} x+2y\\ x-y\\ 2y \end{pmatrix}$ comme la somme de vecteurs qui ne

dépendent que d'une des coordonnées du vecteur de départ :
$$f\binom{x}{y} = \binom{x+2y}{x-y} = \binom{x}{x} + \binom{2y}{-y}$$

on peut alors factoriser le premier vecteur par le nombre x et le second par le nombre y:

$$\begin{pmatrix} x \\ x \\ 0 \end{pmatrix} + \begin{pmatrix} 2y \\ -y \\ 2y \end{pmatrix} = x \times \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + y \times \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

 $f {x \choose y}$ s'écrit alors sous la forme d'une combinaison linéaire de deux colonne : $f {x \choose y} = x\mathbf{C}_1 + y\mathbf{C}_2$, avec $\mathbf{C}_1 = {1 \choose 1}$ et $\mathbf{C}_2 = {2 \choose -1}$.

$$f \begin{pmatrix} x \\ y \end{pmatrix} = x \mathbf{C}_1 + y \mathbf{C}_2$$
, avec $\mathbf{C}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et $\mathbf{C}_2 = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$.

3. Sachant que le produit d'une matrice M par une colonne Xest égale à la combinaison linéaire des colonnes de \mathbf{M} en prenant comme coefficients les termes de X, on a bien :

$$f\binom{x}{y} = x \times \begin{pmatrix} 1\\1\\0 \end{pmatrix} + y \times \begin{pmatrix} 2\\-1\\2 \end{pmatrix} = \begin{pmatrix} 1&2\\1&-1\\0&2 \end{pmatrix} \begin{pmatrix} x\\y \end{pmatrix}.$$

On en déduit que $f\begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{M}\begin{pmatrix} x \\ y \end{pmatrix}$, avec $\mathbf{M} = \begin{pmatrix} 1 & 2 \\ 1 & -1 \\ 0 & 2 \end{pmatrix} = (\mathbf{C}_1 \ \mathbf{C}_2)$.

EXERCICE 2

Ci-dessous les éléments de cours qui seront utilisés pour répondre aux questions de cet exercice.

■ Ensemble de départ et ensemble d'arrivée

Notons m le nombre de lignes et n le nombre de colonnes des matrices de l'exercice, E_i l'ensemble de départ et F_i l'ensemble d'arrivée de l'application f_i . Ces ensembles sont des \mathbb{R} -espaces vectoriels, ou espaces vectoriels sur \mathbb{R} , c'est-à-dire des ensembles de type \mathbb{R}^n (ensemble des vecteurs à n coordonnées).

Chaque colonne de la matrice \mathbf{M}_i est l'image d'un vecteur de la base canonique de l'ensemble départ :

- les images ont m lignes et sont donc des vecteurs de \mathbb{R}^m : l'ensemble d'arrivée est $F_i = \mathbb{R}^m$
- il y a n colonnes et donc n vecteurs dans la base canonique de l'ensemble départ : l'ensemble de départ est $E_i = \mathbb{R}^n$.

On peut retenir ce résultat :

Le format de la matrice M_i , autrement dit le couple :

(nombre de lignes de M_i , nombre de colonnes de M_i)= (m, n)),

est égal à :

(dimension de l'espace d'arrivée de $f_i(\cdot)$, dimension de l'espace de départ de $f_i(\cdot)$).

- Image et rang de l'application linéaire, l'application est-elle surjective ?
 - **L'image** ou ensemble image de l'application f_i est le sous-espace vectoriel de l'ensemble d'arrivée F_i qui comprend tous les vecteurs ayant au moins un antécédent par f_i :

$$Im_{f_i} = \{Y \in F_i \text{ tels que } Y = f_i(X) \text{ avec } X \in E_i\}$$

Ou plus simplement : $Im_{f_i} = \{Y = f_i(X) \ avec \ X \in E_i\} = \{Y = \mathbf{M}_i X \ avec \ X \in E_i\}.$

L'image de l'application f_i est donc l'ensemble des vecteurs qui s'écrivent $\mathbf{M}_i X$, c'est-à-dire l'ensemble des combinaisons linéaires des colonnes de \mathbf{M}_i :

c'est le sous-espace vectoriel de F_i engendré par les colonnes de M_i .

On en déduit que la dimension de l'ensemble image est égale au rang de la matrice \mathbf{M}_i .

- Le rang de l'application linéaire est égal par définition à la dimension de son image. Il est donc égal au rang de la matrice \mathbf{M}_i .
- Une application est **surjective** si **tous les éléments de son ensemble d'arrivée ont au moins un antécédent**, c'est-à-dire si son ensemble image est égal à son ensemble d'arrivée F_i . Cela est le cas si la dimension de Im_{f_i} est égale à celle de F_i , ou autrement dit si

$$rang f_i = \dim F_i$$

- Noyau de l'application linéaire, l'application est-elle injective ?
 - **Le noyau** de l'application f_i est le sous-espace vectoriel de l'ensemble de départ E_i qui comprend tous les vecteurs ayant pour mage le vecteur nul de F_i :

$$Ker_{f_i} = \{X \in E_i \text{ tels que } f_i(X) = \overrightarrow{0}_{F_i}\}$$

- \checkmark Comme $f_i(X) = \mathbf{M}_i X$, on sait que le noyau contient au moins le vecteur nul.
- ✓ Si il ne contient aucun autre vecteur, on écrit alors $Ker_{f_i} = \{ \overrightarrow{0}_{E_i} \}$

- \checkmark S'il contient d'autre vecteurs (une infinité dans ce cas puisque c'est un sous-espace vectoriel de E_i) on caractérise le noyau de l'application en définissant une de ses bases.
- Une application est injective si tous les éléments de son ensemble Image ont au plus un antécédent, c'est-à-dire s'il est impossible de trouver deux vecteurs de Ei ayant la même image. Cela implique que le système d'équation MiX = Y admet au plus une solution quel que soit Y ∈ Fi. Pour que cela soit vérifié, les colonnes de Mi doivent être linéairement indépendantes.

On peut retenir le résultat suivant : L'application f_i définie par $f_i(X) = \mathbf{M}_i X$ est injective si :

- ✓ Les colonnes de \mathbf{M}_i sont libres $\Leftrightarrow rang(\mathbf{M}_i)$ =nombre de colonnes de \mathbf{M}_i
- ✓ Comme par définition $rang f_i = rang \mathbf{M}_i$ et puisque le nombre de colonnes de \mathbf{M}_i est égal à la dimension de l'espace de départ, l'application est injective si :

$$rang f_i = dim E_i$$

- Propriétés de l'application et solutions d'un système d'équations
 - Si f_i(·) est surjective, tous les éléments de F_i ont au moins un antécédent dans E_i:
 ∀ Y ∈ F, le système AX = Y admet au moins une solution
 Dans ce cas, ∀ Y ∈ F, rang(M_i|Y) = rang(M_i).
 - Si $f_i(\cdot)$ est injective, les éléments de F_i ont au plus un antécédent dans E_i $\forall Y \in F$, le système AX = Y admet au plus une solution.

Dans ce cas,

- ✓ Si $Y \in Imf_i$, cela signifie que Y est engendré par les colonnes de M_i et on a alors $rang(M_i|Y) = rang(M_i)$: le système admet une solution unique
- ✓ Si $Y \notin Imf_i$, cela signifie au contraire que Y n'est pas une combinaison linéaire des colonnes de \mathbf{M}_i et que $rang(\mathbf{M}_i|Y) = rang(\mathbf{M}_i) + 1$: le système n'admet aucune solution
- Si $f(\cdot)$ est bijective, tous les éléments de F_i ont un antécédent unique dans E_i : $\forall Y \in F$, le système AX = Y admet une solution unique

1.
$$f_1(X) = \mathbf{M_1}X$$
, avec $\mathbf{M_1} = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & -1 \\ -1 & 1 & 1 \end{pmatrix}$

- Comme la matrice est de format (3, 3) on dit plutôt que c'est une matrice carrée d'ordre 3 —
 l'espace de départ est ℝ³ et l'espace d'arrivée également.
- Rang f_1 = rang $\mathbf{M_1}$ = rang $\begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & -1 \\ -1 & 1 & 1 \end{pmatrix}$ = rang $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 4 & -2 \\ 0 & 2 & 0 \end{pmatrix}$ = rang $\begin{pmatrix} 1 & -1 & 1 \\ 0 & -2 & 4 \\ 0 & 0 & 2 \end{pmatrix}$ = 3.
- Comme l'espace de départ de l'application $f_1(\cdot)$ est $E_1 = \mathbb{R}^3$ et comme $rang f_1 = 3 = \dim E_1$, cette application est injective.

MATHEMATIQUES L2 – COURS DE SOPHIE JALLAIS ET MURIEL PUCCI

- Comme l'espace d'arrivée de l'application $f_1(\cdot)$ est $F_1=\mathbb{R}^3$ et comme $rang f_1=3=\dim F_1$, cette application est surjective.
- Enfin, comme l'application $f_1(\cdot)$ est à la fois injective et surjective, elle est bijective.
- Im $f_1 = F_1 = \mathbb{R}^3$ car, $f_1(\cdot)$ est surjective.
- Ker $f_1 = \{\vec{0}\}$ car $f_1(\cdot)$ est injective.
- Comme $f_1(\cdot)$ est bijective, le système $Y = \mathbf{M}_1 X$ admet une solution unique, et ce, quel que soit le vecteur Y de \mathbb{R}^3 .

2.
$$f_2(X) = \mathbf{M}_2 X$$
, avec $\mathbf{M}_2 = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 0 & -3 & 3 \end{pmatrix}$.

- Comme \mathbf{M}_2 est une matrice carrée d'ordre 3 —l'espace de départ est \mathbb{R}^3 et l'espace d'arrivée également.
- Rang f_2 = rang \mathbf{M}_2 = rang $\begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 0 & -3 & 3 \end{pmatrix}$ = rang $\begin{pmatrix} 1 & -2 & 1 \\ 0 & -1 & 1 \\ 0 & -3 & 3 \end{pmatrix}$ = rang $\begin{pmatrix} 1 & -2 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ = 2.
- Comme l'espace de départ de l'application $f_2(\cdot)$ est $E_2=\mathbb{R}^3$ et comme $rang f_2=2<\dim E_2$, cette application n'est pas injective.
- Comme l'espace d'arrivée de l'application $f_2(\cdot)$ est $F_2=\mathbb{R}^3$ et comme $rang f_2=2<\dim F_2$, cette application n'est pas surjective.
- Enfin, comme l'application $f_2(\cdot)$ n'est ni injective ni surjective, elle n'est pas bijective.
- $\text{Im} f_2$ est le sous-espace vectoriel de $F_2 = \mathbb{R}^3$ engendré par les colonnes de \mathbf{M}_2 . Sa dimension est égale à rang $f_i = 2$. C'est donc un plan vectoriel dans \mathbb{R}^3 .
- $\operatorname{Ker} f_2 = \{X \in \mathbb{R}^3 / \mathbb{M}_2 X = \vec{0}\}$. Comme l'application n'est pas injective, le noyau est un sous-espace vectoriel de $E_2 = \mathbb{R}^3$ différent de $\{\vec{0}\}$ et dim $Ker f_2 \ge 1$ (c'est au moins une droite vectorielle de \mathbb{R}^3)
 - ✓ 1^{ere} méthode de détermination de $kerf_2$ (ou $kerM_2$) : résolution de $M_2X = \vec{0}$.

En appliquant la méthode du pivot sur les lignes de M_2 , on obtient (voir plus haut) la matrice :

$$\begin{pmatrix} 1 & -2 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Le système $\mathbf{M}_2 X = \vec{0}$ est donc équivalent au système

$$\begin{pmatrix} 1 & -2 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} X = \vec{0},$$

ce qui donne, en posant $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$: $\begin{cases} x - 2y + z = 0 \\ - y + z = 0 \end{cases}$

$$\begin{cases} x - 2y + z = 0 \\ - y + z = 0 \end{cases}$$

à savoir :

$$\begin{cases} x = 2y - z = 2z - z = z \\ y = z \end{cases}$$

Le système $\mathbf{M}_2 X = 0$ a donc pour solutions l'ensemble des vecteurs X de la forme $\begin{pmatrix} z \\ z \end{pmatrix}$

 $\operatorname{Ker} f_2$ est donc le sous-espace vectoriel de \mathbb{R}^3 engendré par $\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}\}$.

 \checkmark 2nde méthode de détermination de $kerf_2$: utilisation du théorème des dimensions :

$$dimE_2 = rangf_2 + dimkerf_2$$

On en déduit que dimker $f_2 = dimE_2$ - rang $f_2 = 3 - 2 = 1$.

On sait alors que pour former une base $de\ kerf_2$ il suffit de trouver un vecteur non nul de $kerf_2$, c'est-à-dire un vecteur non nul tel que $\mathbf{M}_2X=0$.

Si l'on note C_1 , C_2 et C_3 les trois colonnes de M_2 respectivement, on remarque que :

$$\mathbf{C}_1 + \mathbf{C}_2 + \mathbf{C}_3 = \vec{0},$$

ce qui donne:

$$(\mathbf{C_1} \quad \mathbf{C_2} \quad \mathbf{C_3}) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \vec{0}$$

ou encore:

$$\mathbf{M}_2\begin{pmatrix}1\\1\\1\end{pmatrix}=\overrightarrow{0}.$$

Le vecteur $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ appartient donc à ker f_2 .

Et comme dimker f_2 = 1, ce vecteur forme même une base de $\ker f_2$.

 $\operatorname{Ker} f_2$ est donc le sous-espace vectoriel de \mathbb{R}^3 engendré par $\left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$.

• Comme $f_2(\cdot)$ n'est pas surjective, le système $Y = \mathbf{M}_2 X$ n'admet pas de solution lorsque Y n'est pas un élément de $\mathrm{Im} f_2$. Mais lorsque $Y \in \mathrm{Im} f_2$, comme l'application n'est pas injective, il n'y a pas une solution unique mais une infinité de solutions. En résumé :

 $\{ si \ Y \in Im f_2 \ | \ le \ système \ admet une infinité de solutions \\ \{ si \ Y \notin Im f_2 \ | \ le \ système \ n'admet \ aucune \ solution \}$

3. $f_3(X) = \mathbf{M}_3 X$, avec $\mathbf{M}_3 = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 1 & 1 \end{pmatrix}$.

- Comme la matrice \mathbf{M}_3 est de format (2 , 3) l'espace de départ de cette application est $E_3 = \mathbb{R}^3$ et son espace d'arrivée est $F_3 = \mathbb{R}^2$.
- son espace d'arrivée est $F_3 = \mathbb{R}^2$. • Rang f_3 = rang \mathbf{M}_3 = rang $\begin{pmatrix} 1 & -2 & 0 \\ -2 & 1 & 1 \end{pmatrix}$ = 2.
- Comme le rang de l'application $f_3(\cdot)$ diffère de la dimension de son espace de départ $(rang f_3 = 2 < \dim \mathbb{R}^3)$, cette application n'est pas injective.

- Comme le rang de $f_3(\cdot)$ est égal à la dimension de son espace d'arrivée ($rang f_3 = 2 = \dim \mathbb{R}^2$), cette application est surjective.
- Enfin, comme l'application $f_3(\cdot)$ n'est pas injective, elle n'est pas non plus bijective.
- $\operatorname{Im} f_3 = F_3 = \mathbb{R}^2 \operatorname{car}, f_3(\cdot) \operatorname{est} \operatorname{surjective}.$
- $\operatorname{Ker} f_3 = \{ X \in \mathbb{R}^3 / \mathbf{M}_3 X = \vec{0} \}.$

✓ 1^{ere} méthode de détermination de $kerf_3$ (ou $ker M_3$) : résolution de $M_3X = \vec{0}$.

En appliquant la méthode du pivot sur les lignes de M_3 , on obtient la matrice :

$$\begin{pmatrix} 1 & -2 & 0 \\ 0 & -3 & 1 \end{pmatrix}$$
.

Le système $\mathbf{M}_3X = \vec{0}$ est donc équivalent au système :

$$\begin{pmatrix} 1 & -2 & 0 \\ 0 & -3 & 1 \end{pmatrix} X = \vec{0},$$

ce qui donne, en posant $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$:

$$\begin{cases} x - 2y &= 0 \\ -3y + z &= 0 \end{cases}$$

Le système $\mathbf{M}_3 X = 0$ a donc pour solutions l'ensemble des vecteurs X de la forme $\begin{pmatrix} 2y \\ y \\ 3y \end{pmatrix}$.

 $\operatorname{Ker} f_3$ est donc le sous-espace vectoriel de \mathbb{R}^3 engendré par $\left\{ \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \right\}$.

 \checkmark 2nde méthode de détermination de $kerf_3$: utilisation du théorème des dimensions:

$$dimE_3 = rangf_3 + dimkerf_3$$

On en déduit que dimker $f_3 = dimE_3$ - rang $f_3 = 3 - 2 = 1$.

On sait alors que pour former une base $de \ ker f_3$ il suffit de trouver un vecteur non nul de $ker f_3$, c'est-à-dire un vecteur non nul tel que $\mathbf{M}_3 X = 0$.

Si l'on note C_1 , C_2 et C_3 les trois colonnes de M_3 respectivement, on remarque que :

$$2\mathbf{C}_1 + \mathbf{C}_2 + 3\mathbf{C}_3 = 0$$

ce qui donne:

$$\mathbf{M}_3\begin{pmatrix}2\\1\\3\end{pmatrix}=\overrightarrow{0}.$$

Le vecteur $\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$ appartient donc à ker f_3 .

Et comme dimker f_3 = 1, ce vecteur forme même une base de $\ker f_3$.

Ker f_3 est donc le sous-espace vectoriel de \mathbb{R}^3 engendré par $\left\{ \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \right\}$.

• Comme $f_3(\cdot)$ est surjective, le système $\mathbf{M}_3X = Y$ a au moins une solution quel que soit le vecteur Y de \mathbb{R}^2 . Comme elle n'est pas injective, ce n'est pas une solution unique. En résumé : quel que soit le vecteur Y de \mathbb{R}^2 , le système $\mathbf{M}_3X = Y$ admet une infinité de solutions.

4.
$$f_4(X) = \mathbf{M_4}X$$
, avec $\mathbf{M_4} = \begin{pmatrix} -1 & 0 \\ -1 & 3 \\ 2 & 1 \end{pmatrix}$.

- Comme la matrice M_4 est de format (3 , 2) l'espace de départ de cette application est $E_4 = \mathbb{R}^2$ et son espace d'arrivée est $F_4 = \mathbb{R}^3$.
- Rang f_4 = rang \mathbf{M}_4 = rang $\begin{pmatrix} -1 & 0 \\ -1 & 3 \\ 2 & 1 \end{pmatrix}$ = 2.
- Le rang de l'application $f_4(\cdot)$ étant égal à la dimension de son espace de départ (rang $f_4=2=$ $dim\mathbb{R}^2$), cette application est injective.
- Comme le rang de $f_4(\cdot)$ diffère de la dimension de son espace d'arrivée (rang f_4 = 2 et dim \mathbb{R}^3 = 3), cette application n'est pas surjective.
- Enfin, comme l'application $f_4(\cdot)$ n'est pas surjective, elle n'est pas non plus bijective.
- ${\rm Im}f_4$ est le sous-espace vectoriel de \mathbb{R}^3 engendré par les 2 colonnes de \mathbb{R}^3 qui sont linéairement indépendantes. C'est donc un sous-espace vectoriel de de dimension 2 (soit un plan vectoriel dans \mathbb{R}^3).
- $\operatorname{Ker} f_4 = \{ \vec{0} \} \operatorname{car} f_4(\cdot) \text{ est injective.}$
- Comme $f_4(\cdot)$ n'est pas surjective, le système $\mathbf{M}_4X = Y$ admet au moins une solution si Yappartient à $\mathrm{Im} f_4$ et aucune solution sinon. Et, comme $f_4(\cdot)$ est injective, si le système a une solution, alors cette solution est unique.

EXERCICE 3 (FACULTATIF) —
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 3 \\ -2 & 1 & 3 & 3 \end{pmatrix}$$

- 1. Rang $\mathbf{A} = 2$.
- 2. Comme, d'après le théorème des dimensions, on sait que :

nombre de colonnes de A = dimkerA + rangA (ou dimE = dimkerf + rangf),

il s'ensuit que :

$$dimker A = 4 - 2 = 2$$
.

Pour former une base de kerA, il faut donc deux vecteurs linéairement indépendants de kerA, c'est-àdire deux vecteurs indépendants tels que $\mathbf{A}X = \vec{0}$.

3. Comme AB = 0 (où B est la matrice B de l'exercice 4 du TD2), on a :

$$\mathbf{A} \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} = \vec{0} \text{ et } \mathbf{A} \begin{pmatrix} 1 \\ 2 \\ 1 \\ -1 \end{pmatrix} = \vec{0}.$$

Les deux vecteurs $\begin{pmatrix} 1 \\ -1 \\ 1 \\ 2 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$ sont donc des éléments de ker**A**.

Comme ces deux vecteurs sont linéairement indépendants (puisqu'ils ne sont pas proportionnels, ces deux vecteurs forment une base de ker**A**. L'ensemble ker**A** est donc l'ensemble des combinaisons linéaires de ces deux vecteurs.

$$ker \mathbf{A} = \mathcal{L} \left(\begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \\ -1 \end{pmatrix} \right)$$

EXERCICE 4

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

1. rang**M** = rang
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 = rang $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ = 1.

- 2. Dimker \mathbf{M} = nombre de colonnes de \mathbf{M} rang \mathbf{M} = 3 1 = 2 : il faut donc deux vecteurs de ker \mathbf{M} pour en former une base.
- 3. Si l'on note C_1 , C_2 et C_3 les trois colonnes de M respectivement, on a :

$$C_1 + C_2 - 2C_3 = \vec{0},$$

 $C_1 - C_2 + 0C_3 = \vec{0}.$

ou encore:

$$2C_1 - C_2 - C_3 = \vec{0},$$

$$C_1 + 0C_2 - C_3 = \vec{0},$$
etc.

Comme $C_1 + C_2 - 2C_3 = \overrightarrow{0}$, on a :

$$\mathbf{M}\begin{pmatrix} 1\\1\\-2 \end{pmatrix} = \vec{0}$$
;

le vecteur $\begin{pmatrix} 1\\1\\-2 \end{pmatrix}$ est donc un élément de ker**M**.

De même, comme $C_1 - C_2 + 0C_3 = \vec{0}$, on a :

$$\mathbf{M}\begin{pmatrix} 1\\-1\\0 \end{pmatrix} = \vec{0};$$

le vecteur $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ est donc un élément de ker**M**.

En outre, les deux vecteurs $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ sont linéairement indépendants (ils forment une matrice de

rang 2). Ils forment donc une base de kerM.

L'ensemble ker**M** est donc l'ensemble des combinaisons linéaires de ces deux vecteurs.

$$\ker \mathbf{M} = \mathcal{L}\left(\begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\-2 \end{pmatrix}\right)$$

EXERCICE 5

$$\mathbf{M} = \begin{pmatrix} 0 & 2 \\ 1 & -1 \\ 0 & 2 \end{pmatrix}.$$

- 1. Cette application linéaire est injective si et seulement si son rang est égal à la dimension de son espace de départ, autrement dit si et seulement si le rang de **M** est égal au nombre de colonnes de **M** à savoir à 2. Or ceci est le cas puisque les deux colonnes de **M** ne sont pas proportionnelles.
- 2. Cette application étant injective, son noyau se réduit au vecteur nul de son espace de départ, autrement dit $\mathbf{M}X = \vec{0}$ a pour unique solution $X = \vec{0}$.

EXERCICE 6

$$f\binom{x}{y} = \binom{x+2y}{x-y}$$

1. On peut représenter une application linéaire $f(\cdot)$ par rapport à d'autres bases que les bases canoniques de ses espaces de départ et d'arrivée. Chaque colonne j de la matrice est alors le vecteur colonne des coordonnées, dans la base de l'espace d'arrivée, de l'image par $f(\cdot)$ du $j^{\text{ème}}$ vecteur de la base de l'espace de départ.

Les deux colonnes de la matrice **N** de $f(\cdot)$ de l'exercice 1 par rapport aux bases :

$$\mathcal{B}_E = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \quad \text{et} \quad \mathcal{B}_F = \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

sont donc les coordonnées, dans la base \mathcal{B}_F , des vecteurs $f\begin{pmatrix}1\\1\end{pmatrix}$ et $f\begin{pmatrix}1\\-1\end{pmatrix}$ respectivement.

♦ Détermination de la première colonne de N

$$f\binom{1}{1} = \mathbf{M}\binom{1}{1} = \binom{1+2(1)}{1-1} = \binom{3}{0}.$$

Les coordonnées de $f \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ dans la base $\mathcal{B}_F = \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$ sont donc les solutions du système :

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}.$$

En appliquant la méthode du pivot à ce système, il vient :

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & -3 & 2 \\ 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 2 \end{pmatrix},$$

puis:

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & -3 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix}.$$

La solution de ce système est donc : c = 0, b = 1, a = 1. Il s'ensuit que la première colonne de **N** est :

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

♦ Détermination de la seconde colonne de N

MATHEMATIQUES L2 – COURS DE SOPHIE JALLAIS ET MURIEL PUCCI

$$f\binom{1}{-1} = \mathbf{M} \binom{1}{-1} = \binom{1+2(-1)}{1-(-1)} = \binom{-1}{2}.$$

Les coordonnées de $f\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ dans la base $\mathcal{B}_F = \left\{ \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$ sont donc les solutions du système :

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -2 \end{pmatrix}.$$

En appliquant la méthode du pivot à ce système, il vient :

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & -3 & 2 \\ 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \\ -2 \end{pmatrix},$$

puis:

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & -3 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \\ 4 \end{pmatrix}.$$

La solution de ce système est donc : c = 4, b = 1, a = -1. Il s'ensuit que la seconde colonne de **N** est :

$$\begin{pmatrix} -1\\1\\4 \end{pmatrix}$$

La matrice N est donc :

$$\mathbf{N} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 4 \end{pmatrix}.$$

2.

- Le produit $\mathbf{MB_1} = \begin{pmatrix} 1 & 1 \\ 1 1 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 1 & -1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 0 & 2 \\ 2 & -2 \end{pmatrix}$ donne les vecteurs images des vecteurs de la base $\mathbf{B_1}$ par l'application f dans la base canonique de l'ensemble d'arrivée.
- Le produit $\mathbf{B_2N} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 0 & 2 \\ 2 & -2 \end{pmatrix}$ correspond au calcul qui est fait pour déterminer les coordonnées des images dans la base canonique $\mathbf{B_2}$. En effet, on a trouvé par exemple $\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ en résolvant $\begin{pmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$.

On a donc bien $MB_1 = B_2N$.

EXERCICE 7

$$f\binom{x}{y} = \binom{6x - 3y}{2x + y}.$$

1.
$$\mathbf{M} = \begin{pmatrix} 6 & -3 \\ 2 & 1 \end{pmatrix}$$

2.

Détermination de la première colonne de **D** :

On a
$$f \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \mathbf{M} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 & -3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix}$$
.

On a $f \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \mathbf{M} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 & -3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix}$. Les coordonnées de $f \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ dans la base $\left\{ \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ sont donc solution de :

$$\begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 12 \\ 8 \end{pmatrix}.$$

En résolvant ce système, on obtient : $\binom{a}{b} = \binom{4}{0}$; première colonne de **D**

Détermination de la seconde colonne de **D** :

On a
$$f\begin{pmatrix}1\\1\end{pmatrix} = \mathbf{M}\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}3\\3\end{pmatrix}$$

$$\binom{3}{2} \binom{1}{1} \binom{a}{b} = \binom{3}{3}$$

Les coordonnées de $f \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ dans la base $\left\{ \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ sont donc solution de : $\begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$ En résolvant ce système, on obtient : $\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$; seconde colonne de **D**.

On a donc:

$$\mathbf{D} = \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}.$$

3.

- Le produit $\mathbf{MB} = \begin{pmatrix} 6 & -3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 3 \\ 8 & 3 \end{pmatrix}$ donne les vecteurs (colonnes) images des vecteurs de la base **B** par l'application $f(\cdot)$ dans la base canonique de l'espace d'arrivée \mathbb{R}^2 .
- Le produit **BD** = $\begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 12 & 3 \\ 8 & 3 \end{pmatrix}$ correspond au calcul qui est fait pour déterminer les coordonnées des images dans la base **B**. En effet, on a trouvé par exemple $\binom{a}{b} = \binom{4}{0}$ en résolvant $\begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 12 \\ 9 \end{pmatrix}$

On a donc bien MB = BD. Par ailleurs, la matrice B étant formée par les vecteurs d'une base de \mathbb{R}^2 , on sait qu'elle est de plein rang et en conséquences inversible.

On peut donc en déduire, en multipliant par la droite les deux termes de l'équation par ${\bf B}^{-1}$, que :

$$M \, \underbrace{BB^{-1}}_{I_2} \, = \, BDB^{-1} \Longleftrightarrow \, M \, = \, BDB^{-1} \, .$$

EXERCICE 8 (FACULTATIF)

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y + z \\ -x - z \\ x - y \end{pmatrix}.$$

$$1. \mathbf{M} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$

- 2. Déterminer la matrice **D** de cette application par rapport à la base $\left\{\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1 \end{pmatrix}\right\}$.
- ♦ Détermination de la première colonne de **D**

$$f\begin{pmatrix}1\\1\\0\end{pmatrix} = \mathbf{M}\begin{pmatrix}1\\1\\0\end{pmatrix} = \begin{pmatrix}-1\\-1\\0\end{pmatrix}$$
 On remarque immédiatement que : $f\begin{pmatrix}1\\1\\0\end{pmatrix} = -1 \times \begin{pmatrix}1\\1\\0\end{pmatrix} + 0 \times \begin{pmatrix}1\\0\\-1\end{pmatrix} + 0 \times \begin{pmatrix}1\\-1\\1\end{pmatrix}$. Les coordonnées de $f\begin{pmatrix}1\\1\\0\end{pmatrix}$ dans la base $\left\{\begin{pmatrix}1\\1\\0\end{pmatrix}, \begin{pmatrix}1\\0\\-1\end{pmatrix}, \begin{pmatrix}1\\-1\\1\end{pmatrix}\right\}$ sont donc données par le vecteur $\begin{pmatrix}-1\\0\\0\end{pmatrix}$ qui constitue la première colonne de \mathbf{D} .

♦ Détermination de la deuxième colonne de **D**

$$f\begin{pmatrix}1\\0\\-1\end{pmatrix}=\mathbf{M}\begin{pmatrix}1\\0\\-1\end{pmatrix}=\begin{pmatrix}-1\\0\\1\end{pmatrix}$$
 On remarque immédiatement que :
$$f\begin{pmatrix}1\\0\\-1\end{pmatrix}=0\times\begin{pmatrix}1\\1\\0\end{pmatrix}-1\times\begin{pmatrix}1\\0\\-1\end{pmatrix}+0\times\begin{pmatrix}1\\-1\\1\end{pmatrix}.$$
 Les coordonnées de
$$f\begin{pmatrix}1\\0\\-1\end{pmatrix}$$
 dans la base
$$\left\{\begin{pmatrix}1\\1\\0\\-1\end{pmatrix},\begin{pmatrix}1\\0\\-1\end{pmatrix},\begin{pmatrix}1\\-1\\1\end{pmatrix}\right\}$$
 sont donc données par le vecteur
$$\begin{pmatrix}0\\-1\\0\end{pmatrix}$$
 qui constitue la deuxième colonne de \mathbf{D} .

♦ Détermination de la troisième colonne de **D**

$$f\begin{pmatrix}1\\-1\\1\end{pmatrix}=\mathbf{M}\begin{pmatrix}1\\-1\\1\end{pmatrix}=\begin{pmatrix}2\\-2\\2\end{pmatrix}$$
 On remarque immédiatement que : $f\begin{pmatrix}1\\-1\\1\end{pmatrix}=0\times\begin{pmatrix}1\\1\\1\end{pmatrix}+0\times\begin{pmatrix}1\\0\\-1\end{pmatrix}+2\times\begin{pmatrix}1\\-1\\1\end{pmatrix}$. Les coordonnées de $f\begin{pmatrix}1\\-1\\1\end{pmatrix}$ dans la base $\left\{\begin{pmatrix}1\\1\\0\end{pmatrix},\begin{pmatrix}1\\0\\-1\end{pmatrix},\begin{pmatrix}1\\-1\\1\end{pmatrix}\right\}$ sont donc données par le vecteur $\begin{pmatrix}0\\0\\2\end{pmatrix}$ qui constitue la première colonne de \mathbf{D} .

La matrice **D** est donc :

$$\mathbf{D} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$3. \mathbf{MB} = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 2 \\ -1 & 0 & -2 \\ 0 & 1 & 2 \end{pmatrix}$$

MATHEMATIQUES L2 – COURS DE SOPHIE JALLAIS ET MURIEL PUCCI

$$\mathbf{BD} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & -1 & 2 \\ -1 & 0 & -2 \\ 0 & 1 & 2 \end{pmatrix}$$

On a donc bien $\mathbf{MB} = \mathbf{BD}$. Par ailleurs, la matrice \mathbf{B} étant formée par les vecteurs d'une base $\mathrm{de}\mathbb{R}^3$, on sait qu'elle est de plein rang donc inversible.

On peut donc en déduire, en multipliant par la droite les deux termes de l'équation par ${\bf B}^{-1}$, que :

$$M \, \underbrace{BB^{-1}}_{I_2} \, = \, BDB^{-1} \, \Longleftrightarrow \, \, M \, \, = \, \, BDB^{-1} \, \, .$$

EXERCICE 9

Les cordonnées dans la base canonique des images des vecteurs de la base \mathcal{B} sont données par \mathbf{MP} . Les coordonnées de ces images dans la base \mathcal{B} vérifient $\mathbf{MP} = \mathbf{PN}$, d'où l'on déduit : $\mathbf{N} = \mathbf{P}^{-1}\mathbf{MP}$

$$\mathbf{N} = \begin{pmatrix} 0.5 & -0.5 & 0.5 \\ 0.5 & 0.5 & -0.5 \\ 0.5 & 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 3 & 1 & -1 \\ 3 & 5 & 3 \\ 2 & 2 & 6 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$